1,245 research outputs found

    Spin wave assisted current induced magnetic domain wall motion

    Full text link
    The interaction between the propagating spin waves and the current driven motion of a transverse domain wall in magnetic nanowires is studied by micromagnetic simulations. If the speed of domain walls due to current induced spin transfer torque is comparable to the velocity driven by spin waves, the speed of domain wall is improved by applying spin waves. The domain wall velocity can be manipulated by the frequency and amplitude of spin waves. The effect of spin waves is suppressed in the high current density regime in which the domain wall is mostly driven by current induced spin transfer torque

    Attenuation characteristics of spin pumping signal due to travelling spin waves

    Full text link
    The authors have investigated the contribution of the surface spin waves to spin pumping. A Pt/NiFe bilayer has been used for measuring spin waves and spin pumping signals simultaneously. The theoretical framework of spin pumping resulting from ferromagnetic resonance has been extended to incorporate spin pumping due to spin waves. Equations for the effective area of spin pumping due to spin waves have been derived. The amplitude of the spin pumping signal resulting from travelling waves is shown to decrease more rapidly with precession frequency than that resulting from standing waves and show good agreement with the experimental data
    corecore